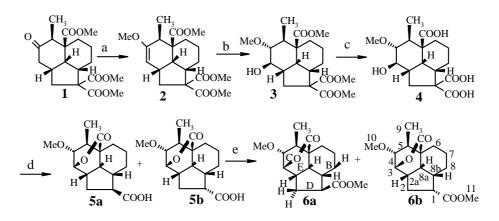
Studies on the Total Synthesis of Hainanolide (VIII) -Introducing C₄-Methoxy Group, and Forming the Ring E (Lactone)

Yan Wu LI, Li Ya ZHU, Liang HUANG*


Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050

Abstract: The titled compound 6a and 6b were synthesized from tricyclic ketone 1 through five steps.

Keywords: Hainanolide, reductive-oxidation, lactonization, decarboxylation, borane.

A series of reports concerning the attempted synthesis of hainanolide, a potential anticancer and antiviral compound, has been reported. This paper is a continuation of the previous work¹⁻⁵. The synthesis of tricyclic ketone **1** was reported by Yang⁵. The route of transformation of ketone **1** to **6a** and **6b** of present report was showed in **Scheme 1**.

Scheme 1

a. LICA/THF, TsOMe, -78°C; b. B₂H₆; H₂O₂/THF, 0°C; c. Ba(OH)₂, H₂O/MeOH, 70°C; d. TsOH/xylene, boiling; e. CH₂N₂, r. t.

^{*} E-mail: lhuang@public.bata.net.cn

Yan Wu LI et al.

Ketone 1 was kinetically enolized⁶ and the enolate was trapped with methyl *p*-toluenesulfonate in THF at -78°C to afford a colorless crystal with m.p. 135.6-136.4 °C in 80% yield. Comparing its IR spectrum with that of ketone 1 the enolate showed the absence of C=O band at 1734cm⁻¹ and instead appearance of a new band at 1672 cm⁻¹ for C=C. The ¹H NMR spectrum showed the =CH- signal at δ 4.38 ppm, a quartet for C₅-H at δ 2.30 ppm and a singlet for C₄-OCH₃ at δ 3.50 ppm. The IR and NMR spectra coincide nicely with the structure of compound 2. Reductive-oxidation⁷ of compound 2 was carried out with borane followed by H_2O_2 to give compound **3** as crystalline solid (m.p. 137.5-138.6 °C) in 68% yield. No double bond signals were observed in its ¹HNMR spectrum. Signals at δ 3.90 ppm (dd, 1H, J=7Hz, 12Hz) and δ 2.95 ppm (d, 1H, J=7Hz) were assigned to O-C₃-H and C₄-H respectively. The stereochemistry of compound 3 was discussed in previous report⁸. Intended selective hydrolysis of the three carboxyl ester groups by heating with barium hydroxide in MeOH/H₂O was failed³. The hydrolyzed product 4 showed absence of signals of ester-methyl groups in its ¹HNMR spectrum. Apparently all the three ester groups were hydrolyzed and gave compound 4 with m.p. 206.8-207.6°C in 87% yield. Treatment of compound 4 with a catalytic amount of p-toluenesulfonic acid in boiling xylene to decarboxylate one of the two carboxyl groups at C_1 and meanwhile the C_3 -OH and C_{5a} -COOH proceeded ring close to form two isomers 5a and 5b with m.p.129.1-130.8°C and m.p. 146.2-147.9°C, respectively. The ratio of 5a:5b was 3:4. They were methylated by treating with diazomethane separately to give corresponding esters **6a** (mp $102.1-102.9^{\circ}$ C) and **6b** (mp 121.4-122.1°C). Two absorption bands of -COO- showed at 1734 cm^{-1} and 1759 cm^{-1} in IR spectra of both **6a** and **6b**. The latter band (1759 cm⁻¹) was assigned to δ -lactone carbonyl. This was supported by the reported lactone absorption in the IR spectrum of hainanolidol⁹ at wavelength of 1760 cm⁻¹. The band at 1734 cm⁻¹ is related to the ester methyl group at C_1 and only one ester methyl group was found in the ¹HNMR spectrum of 6a and 6b (Table 2). This demonstrated that both lactonization and decarboxylation have taken place under the reaction condition as expected. The two compounds 6a and **6b** are different from each other only in the position of the C_1 -COOCH₃. The stereochemistry of H-1 was determined by the NOE spectra. Irradiation of H-1 caused enhancement of signals of both H-2a and H-5 in compound 6a and both H-2 β and H-8a in compound **6b**. All the above results indicated that H-1 in **6a** is at α position while that in **6b** is at β position (**Table 1**).

Based on the above spectra analysis the structures of 6a and 6b were proposed as shown in Scheme 1.

Irradiation H	Correlation peeks in compound 6a	Correlation peeks in compound 6b
H_1	$H_{2\alpha}, H_5$	$H_{8a}, H_{2\beta}$
H_{2a}	$H_{8b}, H_3, H_{2\beta}$	H_{8b} , H_3 , $H_{2\beta}$
H_{8a}	$H_{8b}, H_{8\beta}$	H_{8b} , $H_{8\beta}$, H_1
H_5	H_1 , $H_{7\alpha}$, H_9	$H_{7\alpha}, H_9$

 Table 1
 NOESY 1D of compound 6a and 6b (500MHz in CDCl₃)

398

No	$\delta_{\rm H}$ for 6a	No	δ_H for 6b
1	3.035(m,1H)	1	3.131-3.076(m, 1H)
2α,8a	2.506-2.447(m, 2H)	2α, 2a	2.692-2.747(m, 2H)
2β,6α	2.009-1.921(m, 2H)	2β	1.835(m, 1H)
2a	2.954(m, 1H)	3	4.747(dd,1H, J=2.5, 4)
3	4.690(dd,1H, J=3, 5.5)	4	3.103(dd,1H, J=2.5, 7)
4	3.183(dd, 1H, J=3, 6)	5	2.373(quintet,1H, J=7)
5, 8b	2.258-2.197(m, 2H)	6, 7,8	1.917(m, 1H);
6β,7,8	1.787(m,1H);		1.703-1.611(m, 2H);
	1.682(m,1H)		1.499-1.399(m, 3H)
	1.553(m,1H);	8a	2.652 (m,1H)
	1.416-1.381(m, 2H)	8b	2.301(t, 1H, J=10)
9	1.008(d,3H, J=7)	9	1.046(d, 3H, J=7)
10	3.453(s, 3H)	10	3.444(s, 3H)
11	3.692(s, 3H)	11	3.671(s, 3H)

Table 2 1 H NMR data for 6a and 6b (500MHz in CDCl₃) (δ ppm, J Hz)

References

- 1. D. Wei, L. Huang, Unpubished.
- 2. Z. Q. Yang, S. Z. Chen, L. Huang, Chin. Chem. Lett., 1998, 9(3), 281; doctoral thesis, 1995.
- 3. L. Y. Zhang, W. Q. Yang, S. Z. Chen, L. Huang, *Chin. Chem. Lett.*, **1997**, 8(1), 15; *doctoral thesis*, **1996**.
- 4. X. M. Yu, S. Z. Chen, L. Huang, Chin. Chem. Lett., 2000, 11(4), 295; doctoral thesis, 1999.
- 5. W. Q. Yang, S. Z. Chen, L. Huang, Chin. Chem. Lett., 1997, 8(12), 1043; doctoral thesis, 1997.
- 6. I. Fleming, I. Paterson, *Synthesis*, **1979**, 736.
- 7. H. C. Brown, R. L. Sharp, J. Am. Chem. Soc., 1968, 90, 2915.
- 8. Y. W. Li, L. Huang, Chin. Chem. Lett., 2002, 13(10), 937.
- 9. N. J. Sun, Z. Xue, X. T. Liang, L. Huang, Acta Pharm. Sinica, 1979, 14, 39.

Received 15 April, 2003